

СFRDA Центр финансовых исследований и анализа данных ФЭН НИУ ВШЭ

## Identifying the Distortions of Market Relationships in Government Bond Markets using ARDL-Models

**Teplova T.V.** – the Director of the Centre for Financial Research & Data Analytics (CFRDA) **Lysenko V.V.** – the Research Intern of the CFRDA **Sokolova T.V.** – the Deputy Director of the CFRDA

Moscow, 2021



### The relevance of the study

The government bonds issued in the local currency (GBLCY) in the emerging markets have reached a 30% share in the volume of the world public debt by 2020.

Our research is motivated by identifying new trends after the global financial crisis of 2008 and the regional crises of 2014-2015.

We can assume the presence of market inefficiencies on the BRICS markets:

- Central Bank policy: conducting operations in the market in order to regulate the level of interest rates (India), the exchange rate support policy (China), the policy of stimulating state banks to purchase GBLCY (Russia)
- The barriers that are imposed on the inflow of foreign capital into GBLCY



**The purpose** is to analyze the determinants of government bond nominal yields in the large emerging markets (BRICS countries) using the optimal ARDL models.

#### Our value added (novelty) in the research field:

We develop the methodology for financial market pricing analysis. An own optimal ARDL model with specific variables (lags) is built for every county. We identify and rank the factors that determine the yields of government bonds issued in the local currency (GBLCY), taking into account the time to maturity. Market inefficiencies are determined



### The first group of hypotheses : the impact of country specific factors

| Hypotheses                                                                                                                                             | Relevant<br>literature                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| H1.1. The inflation rate has a significant positive effect on GBLCY yields. An important co-factor is the Central Bank (key rate) policy.              | Senga et al.<br>(2018)                                                                       |
| H1.2. The depreciation of the local currency relative to the US dollar raises GBLCY yields                                                             | Sun et al. (2011)                                                                            |
| <ul><li>H1.3. The economic growth has a significant effect on GBLCY yields.</li><li><i>The effect can be positive or negative.</i></li></ul>           | Izadi and Hassan<br>(2018); Capelle-<br>Blancard et al.<br>(2019); Boysen-<br>Hogrefe (2017) |
| <ul><li>H1.4. The ratio of government debt to GDP significantly effects GBLCY yields.</li><li><i>The effect can be positive or negative.</i></li></ul> | Boysen-Hogrefe<br>(2017); Senga et<br>al. (2018);<br>Rodionova<br>(2014)                     |



### The first group of hypotheses: the impact of country specific factors

| Hypotheses                                                                                                                                                 | Relevant<br>literature   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| <ul><li>H1.5. The balance of the state budget (% GDP) significantly effects GBLCY yields.</li><li><i>The effect can be positive or negative.</i></li></ul> | Boysen-Hogrefe<br>(2017) |
| H1.6. The greater is the increase in the money supply, the lower are GBLCY yields.                                                                         | Dua and Raje<br>(2010)   |



### The second group of hypotheses: the impact of global market factors

| Hypotheses                                                                                                                                                                                | Relevant<br>literature                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| H2.1. The higher is the US market volatility index (VIX), the higher are GBLCY yields in the emerging markets. The VIX growth impacts differently the GBLCY markets of various countries. | Piljak (2013),<br>Silvapulle et al.<br>(2016) |
| H2.2. The growth of the S&P500 stock index has a significant impact on GBLCY yields in emerging markets.                                                                                  | Silvapulle et al.                             |
| <i>The effect can be positive or negative.</i>                                                                                                                                            | (2016)                                        |
| H2.3. The oil price has a significant effect on GBLCY yields.                                                                                                                             | Rodionova                                     |
| <i>The effect can be positive or negative.</i>                                                                                                                                            | (2014)                                        |

**The control variables** are yields of 10-year US Treasuries and 3-month US T-Bills (Hartelius et al., 2008).



### Methodology

✓We check time series for stationarity (Dickey-Fuller, Phillips-Perron, Elliott-Rothenberg-Stock tests) and implement he first differences approach

✓We test the co-integration between the YTM of GBLCY and inflation rate (ARDLbounds tests, Johansen)

✓To estimate the long-term relationship between the model variables, the ARDL model is used in the form of error correction:

 $\Delta YTM_{i,t} = \alpha_i + \theta_i t + \sum_{k=1}^{p \in (1:K^*)} a_{i,k} \Delta YTM_{i,t-k} + \sum_{k=1}^{q \in (1:K^*)} b_{i,k} \Delta \pi^e_{t-k} + \gamma_i YTM_{i,t-1} + \mu_i \pi^e_{t-1} + \varepsilon_{i,t},$ where  $YTM_{i,t}$  is the nominal yield to maturity of a GBLCY with *i* years to maturity (*i* = 1, 3, 5, 10),  $\alpha, \gamma, \mu, \theta, a, b$  are model parameters,  $\pi^e$  is inflation rate,  $K^*$  is the optimal lag of the model variables.

 $\checkmark$ To choose the optimal model, we analyze the models with all possible configurations of  $\{p; q\}$ . After estimating a model, we test its residuals for the normality (Jacques-Burr test) and for autocorrelation (Brousch-Godfrey test), and compute the Akaike (AIC) and Schwartz (BIC) criteria.



## Methodology

✓The following component is used to account for the long-term relationship:

$$ECT_t = \gamma_i YTM_{i,t-1} + \mu \pi^e_{t-1}$$

It is estimated with the help of the  $\Delta$ -method (Oehlert, 1992).  $\checkmark$ A complex factorial ARDL model is built:

$$\Delta YTM_{i,t} = c_i + d_i t + \sum_{k=1}^{p' \in (1:K^*)} a_{i,k} \Delta YTM_{i,t-k} + \sum_{j=1}^n \sum_{k=1}^{q_{j'} \in (1:K^*)} b_{i,k} \Delta X_{j,t-k} + \lambda_i ECT_{i,t-1} + \varepsilon_{i,t}$$

where X is a vector of repressors. The models are built with an individual lag for every explanatory variable of the vector X.

✓The original DEA methodology is used to optimize the model selection procedure. The AIC and BIC criteria are used as inputs in the DEA procedure, and the adjusted R<sup>2</sup>as an output.

 $\checkmark$ A variable importance measure (VIM) is estimated for the optimal model. The LMG metric is used to assess the VIM (Lindeman et al., 1980). This metric allows us to estimate the contribution of every variable to the value of the model coefficient of determination  $R^2$ .

✓Also, ARDL models are built on the basis of the shorter subsamples (for different moving time "windows" / periods) to analyze the changes in the factor effect on the YTM.



### Model variables

| Variable                                       | Description                                                                        |
|------------------------------------------------|------------------------------------------------------------------------------------|
| KeyRate                                        | The Central Bank key rate, %                                                       |
| Inflation                                      | The inflation rate, year on year, %                                                |
| USD_LCY_Return                                 | A change in the exchange rate of the US dollar to the local currency (per month),% |
| Budget_to_GDP                                  | The state budget balance,% of GDP                                                  |
| Debt_to_GDP                                    | The government debt,% of GDP                                                       |
| M2_Change                                      | A change in the money supply M2 (per month),%                                      |
| Output_Change                                  | The industrial production growth rate,%                                            |
| PMI                                            | Purchasing Managers' Index                                                         |
| SnP_500_Return                                 | S&P 500 Index return (per month),%                                                 |
| CBOE_VIX_Return                                | VIX index change in the US market (per month),%                                    |
| BrentReturn                                    | A change in the Brent oil price (per month),%                                      |
| USA_10Y_YTM                                    | YTM of 10-year US Treasuries,%                                                     |
| USA_3M_YTM                                     | YTM of 3-month US T-Bills,%                                                        |
| Y10_GB_YTM, Y5_GB_YTM,<br>Y3_GB_YTM, Y1_GB_YTM | YTM of 10, 5, 3, 1-year GBLCY,%                                                    |



### The sample

**The sample** includes 169 monthly observations for each BRICS country starting from January 2007 to January 2021.

To study the **dynamics** of the factors influence, the sample is divided into subsamples ("windows") of 48 observations in each with an interval between the nearest subsamples that is equal to 4 periods.

Overall we use 31 subsamples (the last subsample includes all observations that remain to the end of the main sample).

|   | Period | Start date | End date |
|---|--------|------------|----------|
|   | 1      | Jan. '07   | Dec. '10 |
|   | 2      | May. '07   | Apr. '11 |
|   | 3      | Sep. '07   | Aug. '11 |
|   | 4      | Jan. '08   | Dec. '11 |
| - | 5      | May. '08   | Apr. '12 |
|   | 6      | Sep. '08   | Aug. '12 |
|   | 7      | Jan. '09   | Dec. '12 |
|   | 8      | May. '09   | Apr. '13 |
|   | 9      | Sep. '09   | Aug. '13 |
|   | 10     | Jan. '10   | Dec. '13 |
|   | 11     | May. '10   | Apr. '14 |
|   | 12     | Sep. '10   | Aug. '14 |
|   | 13     | Jan. '11   | Dec. '14 |
|   | 14     | May. '11   | Apr. '15 |
|   | 15     | Sep. '11   | Aug. '15 |
|   | 16     | Jan. '12   | Dec. '15 |
|   | 17     | May. '12   | Apr. '16 |
|   | 18     | Sep. '12   | Aug. '16 |
|   | 19     | Jan. '13   | Dec. '16 |
|   | 20     | May. '13   | Apr. '17 |
|   | 21     | Sep. '13   | Aug. '17 |
|   | 22     | Jan. '14   | Dec. '17 |
|   | 23     | May. '14   | Apr. '18 |
|   | 24     | Sep. '14   | Aug. '18 |
|   | 25     | Jan. '15   | Dec. '18 |
|   | 26     | May. '15   | Apr. '19 |
|   | 27     | Sep. '15   | Aug. '19 |
|   | 28     | Jan. '16   | Dec. '19 |
|   | 29     | May. '16   | Apr. '20 |
|   | 30     | Sep. '16   | Aug. '20 |
|   | 21     | lan '17    | Dec '20  |

10



### Model results. Russia

|                |               | 5                    |                    | <u>  YTM_Y3  </u> | YTM_Y10   |
|----------------|---------------|----------------------|--------------------|-------------------|-----------|
| 8.0%           |               | Russia, 10Y          | (Intercept)        | 0.198             | 0.554**   |
| 3,5%           |               | d.1.Key Rate         | d.1.Budget_to_GDP  | 0.028*            | 0.05**    |
| 4,0%           |               | d.1.Budget to GDP    | d.1.Debt_to_GDP    |                   | -0.093    |
| 4,4%           |               |                      | d.1.Key_Rate       | 0.534***          | 0.372***  |
|                | d.1.Key_Rate; |                      | d.1.M2_Change      |                   | 0.001     |
| 6,0%           | 47,0%         | Id.2.Debt_to_GDP     | d.1.Output_Change  | -0.025            | -0.014    |
| 6.2%           |               | Id.8.Key_Rate        | d.1.USA_10Y_YTM    | 0.21              |           |
|                |               | I.1.Y10_GB_YTM       | d.1.USA_3M_YTM     | -0.065            | 0.31      |
| 6,7%           |               | Id.4.M2_Change       | d.1.USD_RUB_Return | 0.031***          |           |
|                |               | Id.9.USA_3M_YTM      | I.1.Y10_GB_YTM     |                   | -0.059**  |
|                |               | Id.5.Debt_to_GDP     | I.1.Y3_GB_YTM      | -0.027            |           |
| ld.2.Output_Ch | d.1.Budget to | Others               | ld.1.Budget_to_GDP | 0.05**            |           |
| ange; 7,1%     | GDP; 7,1%     |                      | Id.1.Output_Change | -0.018            |           |
|                |               |                      | ld.1.Y3_GB_YTM     | 0.171***          |           |
| 2,8% 2,5% 2,8% |               | Russia, 3Y           | ld.2.Debt_to_GDP   |                   | 0.132*    |
| 3.0%           |               | ,                    | Id.2.Key_Rate      | 0.142***          |           |
| 3,8%           |               | d.1.Key_Rate         | Id.2.Output_Change |                   | -0.051*** |
| 1 2%           |               | ■ d.1.USD_RUB_Return | Id.2.USA_10Y_YTM   | -0.246            |           |
| 4,270          |               | Id.1.Y3 GB YTM       | Id.4.M2_Change     |                   | -0.017*   |
| 4,7%           |               |                      | ld.5.Debt_to_GDP   |                   | -0.179    |
| ld.1.Y3_GB_YT  |               | = Id 1 Rudget to CDR | ld.6.Debt_to_GDP   |                   | -0.109    |
| M; 6,0%        |               | a.i.budget_to_GDP    | Id.8.Key_Rate      |                   | 0.154***  |
| d.1.USD_RUB_   | d.1.Key_Rate; | Id.10.USA_3M_YTM     | Id.9.USA_3M_YTM    |                   | -0.338*   |
| Return; 8,0%   | 62,1%         | Id.1.Output_Change   | Id.10.USA_3M_YTM   | -0.445***         |           |
|                |               | Id.2.USA_10Y_YTM     | R^2                | 0.502             | 0.6       |
|                |               | I.1.Y3_GB_YTM        | F-stat             | 10.289            | 16.601    |
|                |               | Others               | Adj. R^2           | 0.453             | 0.564     |
|                |               |                      |                    |                   |           |



## Model results. Russia

 $\checkmark$  The main factor that determines the YTM of long-term and medium-term OFZ is the key rate

 $\checkmark$  We find a direct relationship between the balance of a state budget and OFZ YTM

✓ The growth rate of industrial production has a significant negative effect on the YTM of long-term and medium-term OFZ (with a 2-month lag for the YTM of 10-year OFZ, without a lag and with a lag of 1 month for the YTM of 3-year OFZ).

 $\checkmark$  The higher is the increase in M2, the lower is the YTM for long-term OFZ (a 4-month lag).

## **Model results.** China





| China, 10Y                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d.1.KeyRate                                                                                                                                                                                        |
| d.1.USA_3M_YTM                                                                                                                                                                                     |
| Id.1.USA_3M_YTM                                                                                                                                                                                    |
| ■ I.1.Y10_GB_YTM                                                                                                                                                                                   |
| d.1.USA_10Y_YTM                                                                                                                                                                                    |
| Id.4.USA_10Y_YTM                                                                                                                                                                                   |
| Id.10.Y10_GB_YTM                                                                                                                                                                                   |
| Id.1.SP500_Return                                                                                                                                                                                  |
| d.1.SP500_Return                                                                                                                                                                                   |
|                                                                                                                                                                                                    |
|                                                                                                                                                                                                    |
| China, 3Y                                                                                                                                                                                          |
| China, 3Y<br>Id.1.USA_3M_YTM                                                                                                                                                                       |
| China, 3Y<br>Id.1.USA_3M_YTM<br>■d.1.KeyRate                                                                                                                                                       |
| China, 3Y<br>Id.1.USA_3M_YTM<br>d.1.KeyRate<br>Id.2.Output_Change                                                                                                                                  |
| China, 3Y<br>Id.1.USA_3M_YTM<br>d.1.KeyRate<br>Id.2.Output_Change<br>I.1.Y3_GB_YTM                                                                                                                 |
| China, 3Y<br>Id.1.USA_3M_YTM<br>d.1.KeyRate<br>Id.2.Output_Change<br>I.1.Y3_GB_YTM<br>Id.1.Y3_GB_YTM                                                                                               |
| China, 3Y<br>Id.1.USA_3M_YTM<br>d.1.KeyRate<br>Id.2.Output_Change<br>I.1.Y3_GB_YTM<br>Id.1.Y3_GB_YTM<br>Id.5.Output_Change                                                                         |
| China, 3Y<br>Id.1.USA_3M_YTM<br>d.1.KeyRate<br>Id.2.Output_Change<br>I.1.Y3_GB_YTM<br>Id.1.Y3_GB_YTM<br>Id.1.Y3_GB_YTM<br>Id.1.USA_10Y_YTM<br>Id.1.USA_10Y_YTM                                     |
| China, 3Y<br>Id.1.USA_3M_YTM<br>d.1.KeyRate<br>Id.2.Output_Change<br>I.1.Y3_GB_YTM<br>Id.1.Y3_GB_YTM<br>Id.5.Output_Change<br>Id.1.USA_10Y_YTM<br>d.1.CBOE_VIX_Return<br>d.1.USA_10Y_YTM           |
| China, 3Y<br>Id.1.USA_3M_YTM<br>d.1.KeyRate<br>Id.2.Output_Change<br>I.1.Y3_GB_YTM<br>Id.1.Y3_GB_YTM<br>Id.5.Output_Change<br>Id.1.USA_10Y_YTM<br>d.1.CBOE_VIX_Return<br>d.1.USA_10Y_YTM<br>Others |

| YTM_Y3    | YTM_Y10                                                                                                                                                                    |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.249***  | 0.312***                                                                                                                                                                   |
| -0.034    |                                                                                                                                                                            |
| 0.001     |                                                                                                                                                                            |
| 0.408***  | 0.283***                                                                                                                                                                   |
| 0.001     |                                                                                                                                                                            |
|           | 0.0001                                                                                                                                                                     |
| 0.073     | 0.077                                                                                                                                                                      |
| 0.032     | 0.152**                                                                                                                                                                    |
|           | -0.078***                                                                                                                                                                  |
| -0.072*** |                                                                                                                                                                            |
| 0.109     |                                                                                                                                                                            |
|           | 0.002                                                                                                                                                                      |
| 0.085     |                                                                                                                                                                            |
| 0.232***  | 0.162***                                                                                                                                                                   |
| 0.103     |                                                                                                                                                                            |
| 0.016**   |                                                                                                                                                                            |
|           | -0.094**                                                                                                                                                                   |
| -0.014**  |                                                                                                                                                                            |
| -0.068    |                                                                                                                                                                            |
|           | -0.101                                                                                                                                                                     |
| 0.337     | 0.332                                                                                                                                                                      |
|           |                                                                                                                                                                            |
| 6.405     | 6.881                                                                                                                                                                      |
|           | YTM_Y3<br>0.249***<br>-0.034<br>0.001<br>0.408***<br>0.001<br>0.073<br>0.073<br>0.032<br>-0.072***<br>0.109<br>0.085<br>0.232***<br>0.103<br>0.016**<br>-0.014**<br>-0.068 |



### Model results. China/ Summary

 $\checkmark$  One of the most important factors that impacts the YTM of the long and medium-term GBLCY is the key rate.

✓ The YTM of 10-year and 3-year GBLCY is significantly positively influenced by the YTM of 3-month US T-Bills.

 $\checkmark$  The YTM of 10-year GBLCY is significantly negatively affected (with a lag of 4 months) by the YTM of 10-year US Treasuries.

 $\checkmark$  The YTM of 3-year GBLCY is significantly positively influenced by industrial production growth (with a 2-month lag).

 $\checkmark$  The YTM of 10-year GBLCY is positively influenced by the S&P 500 return (effects of capital flows).

 $\checkmark$  The higher is the volatility on the US market, the greater is the YTM of 3-year GBLCY.

## Model results. India

| VI |                    | YTM_Y3    | YTM_Y10   |
|----|--------------------|-----------|-----------|
|    | (Intercept)        | 0.881***  | 1.039***  |
| М  | d.1.BrentReturn    | 0.002     |           |
|    | d.1.Budget_to_GDP  | -0.071    | 0.037     |
|    | d.1.KeyRate        | 0.194*    | 0.3***    |
|    | d.1.M2_Change      |           | -0.001    |
| 1  | d.1.USA_10Y_YTM    | 0.157*    | 0.243***  |
| -  | d.1.USA_3M_YTM     | 0.068     | -0.018    |
|    | I.1.Y10_GB_YTM     |           | -0.118*** |
|    | I.1.Y3_GB_YTM      | -0.098*** |           |
|    | ld.1.USA_10Y_YTM   |           | 0.062     |
|    | ld.1.USA_3M_YTM    | 0.519***  | 0.322***  |
|    | ld.3.Y10_GB_YTM    |           | -0.246*** |
|    | Id.4.BrentReturn   | 0.003**   |           |
|    | Id.4.KeyRate       | -0.152    | -0.174*   |
|    | ld.4.Y10_GB_YTM    |           | 0.211***  |
|    | ld.7.Budget_to_GDP | 0.866***  | 0.513***  |
|    | Id.8.M2_Change     |           | 0.01**    |
|    | trendvar           | -0.002*** | -0.001*** |
|    | R^2                | 0.303     | 0.406     |
|    | F-stat             | 6.618     | 7.085     |
|    | Adj. R^2           | 0.257     | 0.349     |

Foreign funds reduced their investments in GBLCY 1.5 times in the first two quarters of 2020 (from 1.9 to 1.1 bln Indian rupees, Bloomberg). The budget deficit grew from 5.5% to 10.2% of GDP. 15







## Model results. India/summary

✓The YTM of 10-year and 3-year GBLCY is significantly influenced by 1, 3 and 4 lags of the dependent variable

✓The yield of 10-year US Treasuries and 3-month US T-Bills has a significantly positive effect on the YTM of 10-year and 3-year GBLCY.

✓ The effect of the key rate on the YTM of 10-year and 3-year GBLCY is significantly positive.

✓ We highlight that the yield of 3-year GBLCY is positively and significantly influenced by the change in oil prices (with a lag of 4 months) at the 5% confidence level.

 $\checkmark$  As long as M2 increases, the YTM of 10-year GBLCY does not decrease.

 $\checkmark$  The balance of state budget (% of GDP) positively effects the YTM of 10year and 3-year GBLCY.





#### Brazil, 10Y

- d.1.USA\_10Y\_YTMd.1.USD\_BRL\_Return
- Id.1.USD BRL Return
- Id.6.USA\_10Y\_YTM
- Id.2.Output\_Change
- Id.6.M2\_Change
- d.1.USA\_3M\_YTM
  Id.1.USA 10Y YTM
- d.1.Inflation
- Others

#### Brazil, 3Y

- d.1.USA\_10Y\_YTM
   Id.6.USA 10Y YTM
- Id.7.USA 3M YTM
- d.1.Inflation
- Id.1.USA\_10Y\_YTM
- Id.2.Output\_Change
- d.1.USD\_BRL\_Return
- d.1.SnP\_500\_Return
- Id.1.CBOE\_VIX\_Return
- Others

### Model results. Brazil

|                      | YTM_Y3   | YTM_Y10   |
|----------------------|----------|-----------|
| (Intercept)          | 0.488    | 0.723*    |
| d.1.CBOE_VIX_Return  | -0.001   | 0         |
| d.1.Inflation        | 0.406*   | 0.372**   |
| d.1.M2_Change        |          | -0.027    |
| d.1.Output_Change    | -0.017   | -0.012    |
| d.1.SnP_500_Return   | -0.011*  |           |
| d.1.USA_10Y_YTM      | 1.092*** | 1.035***  |
| d.1.USA_3M_YTM       | -0.589** | -0.657*** |
| d.1.USD_BRL_Return   | 0.016*   | 0.039***  |
| I.1.Y10_GB_YTM       |          | -0.048*   |
| I.1.Y3_GB_YTM        | -0.034   |           |
| Id.1.USA_10Y_YTM     | 0.40**   | 0.459**   |
| Id.1.USD_BRL_Return  |          | 0.031***  |
| Id.2.Output_Change   | 0.031**  | 0.037***  |
| Id.3.Y3_GB_YTM       | 0.018    |           |
| Id.6.M2_Change       |          | 0.057**   |
| ld.6.USA_10Y_YTM     | 0.913*** | 0.744***  |
| Id.7.CBOE_VIX_Return |          | -0.002    |
| Id.7.USA_3M_YTM      | -0.389*  |           |
| ld.8.USA_10Y_YTM     | -0.214   |           |
| R^2                  | 0.452    | 0.464     |
| <sup>n</sup> F-stat  | 7.368    | 8.383     |
| Adj. R^2             | 0.391    | 0.409     |



### Model results. Brazil

✓The YTM of 10-year US Treasuries has the most significant effect on the YTM of 10-year and 3-year GBLCY (positive)

✓The impact of 3-month US T-Bills YTM (in the current month) on the YTM of 10-year GBLCY is negative (the effect of capital outflow)

✓The depreciation of the Brazil Real against the US dollar leads to an increase in the YTM of 10-year GBLCY (in the current month and with a lag of 1 month)

✓An increase in the industrial production growth rate (with a lag of 2 months) leads to an increase in the YTM of 10-year and 3-year GBLCY

 $\checkmark$  A growth in money supply M2 (with a lag of 6 months) leads to an increase in the YTM of 10-year GBLCY

✓An increase in the S&P 500 leads to a decrease in the YTM of 3-year GBLCY, while the influence of the US VIX (with a lag of 1 month) is significantly positive

|                                     |                   | S. Africa, 10Y     |                     |           |   |
|-------------------------------------|-------------------|--------------------|---------------------|-----------|---|
| 6,6%                                |                   | ■ d.1.SP500_Return | Model results. So   | uth Afric | a |
|                                     | d.1.SP500_Retu    | d.1.USA_10Y_YTM    |                     |           |   |
|                                     | rn; 25,9%         |                    |                     | YTM_Y10   |   |
|                                     | 1                 | L1.Y10 GB YTM      | (Intercept)         | 0.734**   |   |
| 16 49/                              |                   | d.1.SP500_Return   | -0.015***           |           |   |
| 10,4/0                              | d.1.USA_10Y_Y     |                    | d.1.USA_10Y_YTM     | 0.487***  |   |
|                                     |                   | ■ d.1.USA_3M_YTM   | d.1.USA_3M_YTM      | -0.573*** |   |
|                                     |                   |                    | I.1.Y10_GB_YTM      | -0.09**   |   |
| 1.1.Y10_GB_YT TM; 23,4%<br>M; 16,8% | Id.2.SP500_Return | Id.2.SP500_Return  | 0.009*              |           |   |
|                                     |                   | Id.8.USA_3M_YTM    | 0.257*              |           |   |
|                                     |                   |                    | R^2                 | 0.279     |   |
|                                     |                   | a.8.05A_3M_YTM     | F-stat              | 8.395     |   |
|                                     |                   |                    | Adi. R <sup>2</sup> | 0.246     |   |

✓The global market factors are the most important

✓ The growth of the S&P 500 index (in the current month and with a lag of 2 months) leads to a decrease in the YTM of GBLCY

✓The effect of the 10-year US Treasuries YTM is significantly positive, while the effect of the 3-month US T-Bills YTM is significantly negative



# Factors dynamics for the 3-year GBLCY

| Brent_Return.ld.0    | Inflation.ld.3     |
|----------------------|--------------------|
| Brent_Return.ld.1    | Key_Rate.ld.0      |
| Brent_Return.ld.2    | Key_Rate.ld.1      |
| Brent_Return.ld.3    | Key_Rate.ld.2      |
| Budget_to_GDP.ld.0   | Key_Rate.ld.3      |
| Budget_to_GDP.ld.1   | M2_Change.ld.0     |
| Budget_to_GDP.ld.3   | M2_Change.ld.1     |
| CBOE_VIX_Return.ld.0 | M2_Change.ld.3     |
| CBOE_VIX_Return.ld.1 | Output_Change.ld.0 |
| CBOE_VIX_Return.ld.2 | Output_Change.ld.1 |
| CBOE_VIX_Return.ld.3 | Output_Change.ld.2 |
| Debt_to_GDP.ld.0     | Output_Change.ld.3 |
| Debt_to_GDP.ld.1     | PMI.ld.0           |
| Debt_to_GDP.ld.2     | PMI.ld.1           |
| Debt_to_GDP.ld.3     | PMI.ld.2           |
| ECT.I.1              | SP500_Return.ld.0  |
| Inflation.ld.0       | SP500_Return.ld.1  |
| Inflation.ld.1       | SP500_Return.ld.2  |
| Inflation.ld.2       | SP500_Return.ld.3  |

USA\_10Y\_YTM.Id.0 USA\_10Y\_YTM.ld.1 USA 10Y YTM.Id.2 USA\_10Y\_YTM.ld.3 USA 3M YTM.Id.0 USA\_3M\_YTM.ld.1 USA 3M YTM.Id.2 USA\_3M\_YTM.ld.3 USD\_BRL\_Return.ld.0 USD BRL Return.ld.1 USD\_BRL\_Return.ld.2 USD\_CNY\_Return.ld.0 USD\_CNY\_Return.ld.2 USD RUB Return.ld.0 USD\_RUB\_Return.ld.1 Y3\_GB\_YTM.I.1 Y3\_GB\_YTM.ld.1 Y3\_GB\_YTM.ld.2 Y3\_GB\_YTM.ld.3



### Model results. The factor dynamics for 3-year GBLCY

| Russia | <ul><li>Until the III quarter 2014:</li><li>Exchange rate;</li><li>Industrial production growth rate</li></ul>                                              | Until the III quarter 2016:<br>- Key rate                                                                                                                  | <ul> <li>In 2017-2020:</li> <li>Exchange rate;</li> <li>Key rate;</li> <li>The YTM of 3 months<br/>US T-Bills</li> </ul>                                  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| China  | <ul> <li>Up to IV quarter 2013:</li> <li>The YTM of 3 months<br/>US T-Bills and 10-year<br/>US Treasuries;</li> <li>Oil price</li> </ul>                    | Between 2014 and the I<br>quarter. 2015:<br>- The YTM of 10-year US<br>Treasuries<br>In 2016-2017:<br>- S&P 500 index return;<br>- Key rate                | <ul> <li>In 2018-2020:</li> <li>Industrial production<br/>growth rate</li> <li>The YTM of 3-month US<br/>T-Bills and 10-year US<br/>Treasuries</li> </ul> |
| India  | <ul> <li>Until the II quarter 2015:</li> <li>The YTM of 3-month<br/>US T-Bills;</li> <li>The YTM of 3-year<br/>GBLCY in the previous<br/>periods</li> </ul> | <ul> <li>Up to IV quarter 2016:</li> <li>The YTM of 3-year<br/>GBLCY in the previous<br/>periods;</li> <li>The YTM of 10-year US<br/>Treasuries</li> </ul> | <ul> <li>In 2018-III quarter 2020:</li> <li>State budget balance<br/>(% of GDP);</li> <li>Key rate</li> </ul>                                             |
| Brazil | Before 2014:<br>- The YTM of 10-year US<br>Treasuries                                                                                                       | In 2014-2015:<br>- The YTM of 10-year US<br>Treasuries<br>- VIX USA                                                                                        | In 2016-2019:<br>- The YTM of 10-year US<br>Treasuries<br>In 2020: VIX USA                                                                                |





Teplova T.V. – the Director of the Centre for Financial Research & Data Analytics (CFRDA)
Lysenko V.V. – the Research Intern of the CFRDA
Sokolova T.V. – the Deputy Director of the CFRDA